A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China

نویسندگان

  • Ben Zhao
  • Syed Tahir Ata-UI-Karim
  • Xia Yao
  • YongChao Tian
  • WeiXing Cao
  • Yan Zhu
  • XiaoJun Liu
چکیده

Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0-375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a Critical Nitrogen Dilution Curve Based on Leaf Area Duration in Wheat

Precise quantification of plant nitrogen (N) nutrition status is essential for crop N management. The concept of critical N concentration (Nc) has been widely used for assessment of plant N status. This study aimed to develop a new winter wheat Nc dilution curve based on leaf area duration (LAD). Four field experiments were performed on different cultivars with different N fertilization modes i...

متن کامل

Actual impacts of global warming on winter wheat yield in Eastern Himalayas

Himalayas, are among the areas most vulnerable to global warming, however, little is knownabout warming impacts on the crops. Therefore, the actual affects of anticipated warming onwinter wheat were tested in Tibet, China. During the period 1988-2012, Tibet region hasexperienced a large increase in daily mean, minimum and maximum temperatures during wheatgrowing seasons by 0.50, 0.67 and 0.51 o...

متن کامل

The impact of atmospheric temperature and soil nitrogen on some physiological traits and dry matter accumulation of wheat (Triticum aestivum cv. Bahar)

Wheat is the most important cereal crop in the world as well as in Iran. The studies related to the effects of global climate change on wheat production usually assess the impact of changes in atmospheric CO2 concentration and temperature on growth and yield. On the other hand, nitrogen is the most crucial plant nutrient for crop production and the proper management and improving the utilizatio...

متن کامل

The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China

Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of ele...

متن کامل

Effects of sowing time and rate on crop growth and radiation use efficiency of winter wheat in the North China Plain

Crop depends on its canopy to intercept solar radiation to drive both assimilation and water, nutrient absorption for its growth. Field experiments, involving three sowing time and three sowing rate, were conducted at Luancheng Station to investigate the effects of canopy size and development on crop growth and radiation use efficiency (RUE) of winter wheat during 2009/2010 and 2010/2011 gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016